1,3,5-Trimethylbenzene

A summary of the most common chemical descriptors (InChI Key and SMILES codes) for 1,3,5-Trimethylbenzene are summarized together with 3D and 2D structures and relevant physico-chemical properties.

What is the 1,3,5-Trimethylbenzene?

The molecule 1,3,5-Trimethylbenzene presents a molecular formula of C9H12 and its IUPAC name is 1,3,5-trimethylbenzene.

1,3,5-Trimethylbenzene is a molecule composed of three methyl groups attached to a benzene ring. It is a colorless liquid with a strong, gasoline-like odor. It is used as a solvent and as a fuel additive..

1,3,5-Trimethylbenzene is a member of a class of molecules called aromatic hydrocarbons, or aromatics. Benzene is the simplest aromatic hydrocarbon, and 1,3,5-trimethylbenzene is an example of a substituted aromatic. Aromatics are characterized by their stability and by their ability to undergo substitution reactions..

1,3,5-Trimethylbenzene is produced by the alkylation of benzene with methanol. The alkylation of benzene is a process in which alkyl groups are added to the benzene molecule. Methanol is the simplest alkyl group, and so 1,3,5-trimethylbenzene is sometimes referred to as "methylbenzene" or "wood alcohol.".

The production of 1,3,5-trimethylbenzene is a two-step process. In the first step, benzene and methanol are reacted in the presence of an acid catalyst to form alkylbenzene. In the second step, the alkylbenzene is reacted with a methylating agent to form 1,3,5-trimethylbenzene..

1,3,5-Trimethylbenzene is a flammable liquid, and so it must be handled with care. It should be stored in a cool, dry place, away from heat and ignition sources..

3D structure

Cartesian coordinates

Geometry of 1,3,5-Trimethylbenzene in x, y and z coordinates (Å units) to copy/paste elsewhere. Generated with Open Babel software.

2D drawing

 

1,3,5-Trimethylbenzene AUHZEENZYGFFBQ-UHFFFAOYSA-N chemical compound 2D structure molecule svg
1,3,5-Trimethylbenzene

 

Molecule descriptors

 
IUPAC name1,3,5-trimethylbenzene
InChI codeInChI=1S/C8H10O2/c9-5-7-1-2-8(6-10)4-3-7/h1-4,9-10H,5-6H2
InChI KeyAUHZEENZYGFFBQ-UHFFFAOYSA-N
SMILESc1(cc(cc(c1)C)C)C

Other names (synonyms)

IUPAC nomenclature provides a standardized method for naming chemical compounds. Although this system is widely used in chemistry, many chemical compounds have also other names commonly used in different contexts. These synonyms can come from a variety of sources and are used for a variety of purposes.

One common source of synonyms for chemical compounds is the common or trivial names, assigned on the basis of appearance, properties, or origin of the molecule.

Another source of synonyms are historical or obsolete names employed in the past, however replaced nowadays by more modern or standardized names.

In addition to common and historical names, chemical compounds may also have synonyms that are specific to a particular field or industry.

Reference codes for other databases

There exist several different chemical codes commonly used in orded to identify molecules:

Physico-Chemical properties

IUPAC name1,3,5-trimethylbenzene
Molecular formulaC9H12
Molecular weight120.192
Melting point (ºC)-45
Boiling point (ºC)165
Density (g/cm3)0.865
Molar refractivity41.34
LogP2.6
Topological polar surface area40.5

LogP and topological polar surface area (TPSA) values were estimated using Open Babel software.

The n-octanol/water partition coeficient (Kow) data is applied in toxicology and drug research. Kow values are used, to guess the environmental fate of persistent organic pollutants. High partition coefficients values, tend to accumulate in the fatty tissue of organisms. Molecules with a log(Kow) (or LogP) greater than 5 are considered to bioaccumulate.

TPSA values are the sum of the surface area over all polar atoms or molecules, mainly oxygen and nitrogen, also including hydrogen atoms.

In medicinal chemistry, TPSA is used to assess the ability of a drug to permeabilise cells.

For molecules to penetrate the blood-brain barrier (and act on receptors in the central nervous system), TPSA values below 90 Å2 are required. Thus, molecules with a polar surface area greater than 140 Å2 tend to be poorly permeable to cell membranes.