2-Thiopheneacetonitrile

A summary of the most common chemical descriptors (InChI Key and SMILES codes) for 2-Thiopheneacetonitrile are summarized together with 3D and 2D structures and relevant physico-chemical properties.

What is the 2-Thiopheneacetonitrile?

The molecule 2-Thiopheneacetonitrile presents a molecular formula of C6H5NS and its IUPAC name is 2-thiopheneacetonitrile.

2-Thiopheneacetonitrile is a molecule with the chemical formula C6H5CN. It is a colorless liquid with a pungent odor. It is insoluble in water, but soluble in organic solvents. It is used as a precursor to thiophene-based polymers..

2-Thiopheneacetonitrile is produced by the reaction of thiophene and acetonitrile..

Thiophene is a five-membered ring containing one sulfur atom. It is an important building block in the synthesis of organic compounds. Thiophene-based polymers are used in optical materials, sensors, and semiconductors..

Acetonitrile is a colorless liquid with a strong, unpleasant odor. It is miscible with water and is used as a solvent in many industrial and laboratory processes..

The reaction of thiophene and acetonitrile produces 2-thiopheneacetonitrile in good yield..

2-Thiopheneacetonitrile is a versatile molecule that can be used in the synthesis of thiophene-based polymers. These polymers have many applications in optical materials, sensors, and semiconductors..

3D structure

Cartesian coordinates

Geometry of 2-Thiopheneacetonitrile in x, y and z coordinates (Å units) to copy/paste elsewhere. Generated with Open Babel software.

2D drawing

 

2-Thiopheneacetonitrile CLSHQIDDCJTHAJ-UHFFFAOYSA-N chemical compound 2D structure molecule svg
2-Thiopheneacetonitrile

 

Molecule descriptors

 
IUPAC name2-thiopheneacetonitrile
InChI codeInChI=1S/C7H16O2/c1-5-8-7(3,4)9-6-2/h5-6H2,1-4H3
InChI KeyCLSHQIDDCJTHAJ-UHFFFAOYSA-N
SMILESN#CCc1sccc1

Other names (synonyms)

IUPAC nomenclature provides a standardized method for naming chemical compounds. Although this system is widely used in chemistry, many chemical compounds have also other names commonly used in different contexts. These synonyms can come from a variety of sources and are used for a variety of purposes.

One common source of synonyms for chemical compounds is the common or trivial names, assigned on the basis of appearance, properties, or origin of the molecule.

Another source of synonyms are historical or obsolete names employed in the past, however replaced nowadays by more modern or standardized names.

In addition to common and historical names, chemical compounds may also have synonyms that are specific to a particular field or industry.

Reference codes for other databases

There exist several different chemical codes commonly used in orded to identify molecules:

Physico-Chemical properties

IUPAC name2-thiopheneacetonitrile
Molecular formulaC6H5NS
Molecular weight123.176
Melting point (ºC)-
Boiling point (ºC)-
Density (g/cm3)1.160
Molar refractivity33.84
LogP1.8
Topological polar surface area18.5

LogP and topological polar surface area (TPSA) values were estimated using Open Babel software.

The n-octanol/water partition coeficient (Kow) data is applied in toxicology and drug research. Kow values are used, to guess the environmental fate of persistent organic pollutants. High partition coefficients values, tend to accumulate in the fatty tissue of organisms. Molecules with a log(Kow) (or LogP) greater than 5 are considered to bioaccumulate.

TPSA values are the sum of the surface area over all polar atoms or molecules, mainly oxygen and nitrogen, also including hydrogen atoms.

In medicinal chemistry, TPSA is used to assess the ability of a drug to permeabilise cells.

For molecules to penetrate the blood-brain barrier (and act on receptors in the central nervous system), TPSA values below 90 Å2 are required. Thus, molecules with a polar surface area greater than 140 Å2 tend to be poorly permeable to cell membranes.