Acrolein

A summary of the most common chemical descriptors (InChI Key and SMILES codes) for Acrolein are summarized together with 3D and 2D structures and relevant physico-chemical properties.

What is the Acrolein?

The molecule Acrolein presents a molecular formula of C3H4O and its IUPAC name is acrolein.

Acrolein is a molecule composed of two carbon atoms and three hydrogen atoms. It is a colorless liquid with a pungent, acrid odor. Acrolein is produced naturally by a variety of organisms, including bacteria, and is also a by-product of burning organic matter..

Acrolein is highly reactive, and can easily bind to other molecules, including proteins. This binding can alter the function of the protein, and has been linked to a variety of diseases, including cancer. Acrolein is also a potent environmental pollutant, and has been shown to damage DNA..

While acrolein is produced naturally, the majority of exposure comes from man-made sources. Cigarette smoke is a major source of acrolein exposure, and the molecule is also found in car exhaust and in the fumes from burning plastics. Acrolein is used industrially as a herbicide, and is also a by-product of many industrial processes..

There is no safe level of acrolein exposure, and the molecule poses a serious health risk. Acrolein has been linked to cancer, and is also a respiratory irritant. Exposure to acrolein can cause coughing, wheezing, and difficulty breathing. Acrolein is also a skin and eye irritant, and can cause skin burns and eye damage..

While there are no regulations specifically governing acrolein exposure, the Occupational Safety and Health Administration (OSHA) has set a permissible exposure limit (PEL) for acrolein of 0.1 ppm (parts per million). This limit is based on the effects of acrolein on the respiratory system, and is intended to protect workers from the health effects of acrolein exposure..

3D structure

Cartesian coordinates

Geometry of Acrolein in x, y and z coordinates (Å units) to copy/paste elsewhere. Generated with Open Babel software.

2D drawing

 

Acrolein HGINCPLSRVDWNT-UHFFFAOYSA-N chemical compound 2D structure molecule svg
Acrolein

 

Molecule descriptors

 
IUPAC nameacrolein
InChI codeInChI=1S/C6H10S/c1-3-5-7-6-4-2/h3-4H,1-2,5-6H2
InChI KeyHGINCPLSRVDWNT-UHFFFAOYSA-N
SMILESC(=C)C=O

Other names (synonyms)

IUPAC nomenclature provides a standardized method for naming chemical compounds. Although this system is widely used in chemistry, many chemical compounds have also other names commonly used in different contexts. These synonyms can come from a variety of sources and are used for a variety of purposes.

One common source of synonyms for chemical compounds is the common or trivial names, assigned on the basis of appearance, properties, or origin of the molecule.

Another source of synonyms are historical or obsolete names employed in the past, however replaced nowadays by more modern or standardized names.

In addition to common and historical names, chemical compounds may also have synonyms that are specific to a particular field or industry.

Reference codes for other databases

There exist several different chemical codes commonly used in orded to identify molecules:

Physico-Chemical properties

IUPAC nameacrolein
Molecular formulaC3H4O
Molecular weight56.0633
Melting point (ºC)-87
Boiling point (ºC)53
Density (g/cm3)0.839
Molar refractivity16.26
LogP0.4
Topological polar surface area25.3

LogP and topological polar surface area (TPSA) values were estimated using Open Babel software.

The n-octanol/water partition coeficient (Kow) data is applied in toxicology and drug research. Kow values are used, to guess the environmental fate of persistent organic pollutants. High partition coefficients values, tend to accumulate in the fatty tissue of organisms. Molecules with a log(Kow) (or LogP) greater than 5 are considered to bioaccumulate.

TPSA values are the sum of the surface area over all polar atoms or molecules, mainly oxygen and nitrogen, also including hydrogen atoms.

In medicinal chemistry, TPSA is used to assess the ability of a drug to permeabilise cells.

For molecules to penetrate the blood-brain barrier (and act on receptors in the central nervous system), TPSA values below 90 Å2 are required. Thus, molecules with a polar surface area greater than 140 Å2 tend to be poorly permeable to cell membranes.