A summary of the most common chemical descriptors (InChI Key and SMILES codes) for 3,5-Dimethylanisole are summarized together with 3D and 2D structures and relevant physico-chemical properties.

What is the 3,5-Dimethylanisole?

The molecule 3,5-Dimethylanisole presents a molecular formula of C9H12O and its IUPAC name is 3,5-dimethylanisole.

3,5-Dimethylanisole (DMA) is a molecule with the molecular formula C9H11NO. It is a colorless liquid with a strong aromatic odor. It is insoluble in water but soluble in most organic solvents..

DMA is used as a flavorant and fragrance in a variety of products, including food, beverages, and cosmetics. It is also used as a solvent and an intermediate in the synthesis of other chemicals..

Health and safety.

DMA is considered to be a reasonably safe chemical when used as intended. However, it can be harmful if swallowed, inhaled, or absorbed through the skin. Exposure to high concentrations of DMA can cause irritation of the eyes, nose, and throat. Inhalation of DMA can also cause dizziness, headache, and nausea..

If swallowed, DMA can cause gastrointestinal irritation and vomiting. Skin contact with DMA can cause irritation and redness..

DMA lies as a flammable liquid and should be kept away from heat and open flames..

Storage and disposal.

DMA should be stored in a cool, dry place in a well-ventilated area. It should be kept away from heat and open flames..

DMA can be disposed of by incineration or by treatment with an approved waste disposal facility..

3D structure

Cartesian coordinates

Geometry of 3,5-Dimethylanisole in x, y and z coordinates (Å units) to copy/paste elsewhere. Generated with Open Babel software.

2D drawing


3,5-Dimethylanisole JCHJBEZBHANKGA-UHFFFAOYSA-N chemical compound 2D structure molecule svg


Molecule descriptors

IUPAC name3,5-dimethylanisole
InChI codeInChI=1S/C10H22/c1-5-9(3)7-8-10(4)6-2/h9-10H,5-8H2,1-4H3

Other names (synonyms)

IUPAC nomenclature provides a standardized method for naming chemical compounds. Although this system is widely used in chemistry, many chemical compounds have also other names commonly used in different contexts. These synonyms can come from a variety of sources and are used for a variety of purposes.

One common source of synonyms for chemical compounds is the common or trivial names, assigned on the basis of appearance, properties, or origin of the molecule.

Another source of synonyms are historical or obsolete names employed in the past, however replaced nowadays by more modern or standardized names.

In addition to common and historical names, chemical compounds may also have synonyms that are specific to a particular field or industry.

Reference codes for other databases

There exist several different chemical codes commonly used in orded to identify molecules:

Physico-Chemical properties

IUPAC name3,5-dimethylanisole
Molecular formulaC9H12O
Molecular weight136.191
Melting point (ºC)-
Boiling point (ºC)193
Density (g/cm3)0.963
Molar refractivity42.87
Topological polar surface area-

LogP and topological polar surface area (TPSA) values were estimated using Open Babel software.

The n-octanol/water partition coeficient (Kow) data is applied in toxicology and drug research. Kow values are used, to guess the environmental fate of persistent organic pollutants. High partition coefficients values, tend to accumulate in the fatty tissue of organisms. Molecules with a log(Kow) (or LogP) greater than 5 are considered to bioaccumulate.

TPSA values are the sum of the surface area over all polar atoms or molecules, mainly oxygen and nitrogen, also including hydrogen atoms.

In medicinal chemistry, TPSA is used to assess the ability of a drug to permeabilise cells.

For molecules to penetrate the blood-brain barrier (and act on receptors in the central nervous system), TPSA values below 90 Å2 are required. Thus, molecules with a polar surface area greater than 140 Å2 tend to be poorly permeable to cell membranes.