A summary of the most common chemical descriptors (InChI Key and SMILES codes) for Bis(4-cyanophenyl)methanol are summarized together with 3D and 2D structures and relevant physico-chemical properties.

What is the Bis(4-cyanophenyl)methanol?

The molecule Bis(4-cyanophenyl)methanol presents a molecular formula of C15H10N2O and its IUPAC name is 4-[(4-cyanophenyl)-hydroxymethyl]benzonitrile.

Bis(4-cyanophenyl)methanol is a molecule composed of two cyanophenyl groups bonded to a central methanol group. This molecule is used as a precursor in the synthesis of various organic compounds, including pigments, dyes, and pharmaceuticals..

The cyanophenyl groups in bis(4-cyanophenyl)methanol can be replaced with other groups to produce molecules with different properties. For example, replacing one of the cyanophenyl groups with a fluorenyl group produces a molecule that is more soluble in organic solvents. This can be useful for synthesizing compounds that are difficult to dissolve in water..

Bis(4-cyanophenyl)methanol is also a building block for the synthesis of other molecules, such as bis(4-fluorenyl)methanol. This molecule can be used to produce organic light-emitting diodes (OLEDs). OLEDs are a type of display that is thin, lightweight, and flexible. They are used in a variety of electronic devices, including cell phones, television screens, and computer monitors..

3D structure

Cartesian coordinates

Geometry of Bis(4-cyanophenyl)methanol in x, y and z coordinates (Å units) to copy/paste elsewhere. Generated with Open Babel software.

2D drawing


Bis(4-cyanophenyl)methanol JNJWXPZHWUOYRZ-UHFFFAOYSA-N chemical compound 2D structure molecule svg


Molecule descriptors

IUPAC name4-[(4-cyanophenyl)-hydroxymethyl]benzonitrile
InChI codeInChI=1S/C15H10N2O/c16-9-11-1-5-13(6-2-11)15(18)14-7-3-12(10-17)4-8-14/h1-8,15,18H

Other names (synonyms)

IUPAC nomenclature provides a standardized method for naming chemical compounds. Although this system is widely used in chemistry, many chemical compounds have also other names commonly used in different contexts. These synonyms can come from a variety of sources and are used for a variety of purposes.

One common source of synonyms for chemical compounds is the common or trivial names, assigned on the basis of appearance, properties, or origin of the molecule.

Another source of synonyms are historical or obsolete names employed in the past, however replaced nowadays by more modern or standardized names.

In addition to common and historical names, chemical compounds may also have synonyms that are specific to a particular field or industry.

  • 134521-16-7
  • 3WEU2JKQ13
  • 4, 4'-Dicyanobenzhydrol
  • 4,4 inverted exclamation mark -(Hydroxymethylene)dibenzonitrile
  • 4,4'-(Hydroxymethylene)bisbenzonitrile
  • 4,4'-(Hydroxymethylene)dibenzonitrile (Bis-(4-Cyanophenyl)methanol)
  • 4,4'-(hydroxymethylene)bis benzonitrile
  • 4,4'-Dicyanobenzhydrol
  • 4,4'-Methanolbisbenzonitrile
  • 4,4'-methanol-bisbenzonitrile
  • 4-[(4-cyanophenyl)(hydroxy)methyl]benzonitrile
  • 4-[(4-cyanophenyl)-hydroxymethyl]benzonitrile
  • 4-[(4-cyanophenyl)-oxidanyl-methyl]benzenecarbonitrile
  • 521B167
  • A806790
  • AB31513
  • AC-1410
  • ACT09354
  • AMY666
  • BCP13807
  • Benzonitrile, 4,4'-(hydroxymethylene)bis-
  • Bis(4-cyanophenyl)methanol
  • Bis(4-cyanophenyl)methanol-[d4]
  • Bis(p-cyanophenyl)methanol
  • CGP 44 645
  • CGP-44645
  • CS-W003371
  • DB-022665
  • DS-1565
  • FT-0643222
  • J-006549
  • MFCD07367966
  • Q27258134
  • SY024455

Reference codes for other databases

There exist several different chemical codes commonly used in orded to identify molecules:
  • ZINC21985090
  • AKOS015889814
  • DTXSID10440392
  • CHEBI:174198
  • SCHEMBL691258

Physico-Chemical properties

IUPAC name4-[(4-cyanophenyl)-hydroxymethyl]benzonitrile
Molecular formulaC15H10N2O
Molecular weight234.253
Melting point (ºC)
Boiling point (ºC)
Density (g/cm3)
Molar refractivity66.49
Topological polar surface area67.8

LogP and topological polar surface area (TPSA) values were estimated using Open Babel software.

The n-octanol/water partition coeficient (Kow) data is applied in toxicology and drug research. Kow values are used, to guess the environmental fate of persistent organic pollutants. High partition coefficients values, tend to accumulate in the fatty tissue of organisms. Molecules with a log(Kow) (or LogP) greater than 5 are considered to bioaccumulate.

TPSA values are the sum of the surface area over all polar atoms or molecules, mainly oxygen and nitrogen, also including hydrogen atoms.

In medicinal chemistry, TPSA is used to assess the ability of a drug to permeabilise cells.

For molecules to penetrate the blood-brain barrier (and act on receptors in the central nervous system), TPSA values below 90 Å2 are required. Thus, molecules with a polar surface area greater than 140 Å2 tend to be poorly permeable to cell membranes.