A summary of the most common chemical descriptors (InChI Key and SMILES codes) for [(2R,4S)-2-[(1S)-1-iodoethyl]-1,3-dioxolan-4-yl]methanol are summarized together with 3D and 2D structures and relevant physico-chemical properties.

What is the [(2R,4S)-2-[(1S)-1-iodoethyl]-1,3-dioxolan-4-yl]methanol?

The molecule [(2R,4S)-2-[(1S)-1-iodoethyl]-1,3-dioxolan-4-yl]methanol presents a molecular formula of C24H42O21 and its IUPAC name is [(2R,4S)-2-[(1S)-1-iodoethyl]-1,3-dioxolan-4-yl]methanol.

Iodomethane is a molecule with the chemical formula CH3I. It is a colorless, volatile liquid with a strong, unpleasant odor. Iodomethane is used as a reagent in organic synthesis and as a disinfectant..

Iodomethane is prepared by the reaction of iodine with methane in the presence of a catalyst:.

2CH3I + 2I2 → 2CH3II + I2.

The iodomethane molecule is linear, with a bond length of 1.54 Å between the carbon and iodine atoms. The C-I bond is polar, with the iodine atom bearing a partial negative charge and the carbon atom a partial positive charge..

Iodomethane is a strong base, with a pKa of 16.7. It reacts with water to form hydriodic acid, HI:.

CH3I + H2O → CH3OH + HI.

Iodomethane is used as a methylating agent in organic synthesis. It reacts with aldehydes and ketones to form methylated derivatives:.


Iodomethane is also used as a disinfectant. It is effective against a wide range of microorganisms, including bacteria, viruses, and fungi..

3D structure

Cartesian coordinates

Geometry of [(2R,4S)-2-[(1S)-1-iodoethyl]-1,3-dioxolan-4-yl]methanol in x, y and z coordinates (Å units) to copy/paste elsewhere. Generated with Open Babel software.

2D drawing


[(2R,4S)-2-[(1S)-1-iodoethyl]-1,3-dioxolan-4-yl]methanol LUEWUZLMQUOBSB-CHYJJPLWSA-N chemical compound 2D structure molecule svg


Molecule descriptors

IUPAC name[(2R,4S)-2-[(1S)-1-iodoethyl]-1,3-dioxolan-4-yl]methanol
InChI codeInChI=1S/C24H42O21/c25-1-5-9(29)10(30)15(35)22(40-5)44-19-7(3-27)42-24(17(37)12(19)32)45-20-8(4-28)41-23(16(36)13(20)33)43-18-6(2-26)39-21(38)14(34)11(18)31/h5-38H,1-4H2/t5-,6-,7-,8-,9-,10+,11-,12-,13-,14-,15-,16-,17-,18-,19-,20-,21-,22-,23-,24-/m1/s1

Other names (synonyms)

IUPAC nomenclature provides a standardized method for naming chemical compounds. Although this system is widely used in chemistry, many chemical compounds have also other names commonly used in different contexts. These synonyms can come from a variety of sources and are used for a variety of purposes.

One common source of synonyms for chemical compounds is the common or trivial names, assigned on the basis of appearance, properties, or origin of the molecule.

Another source of synonyms are historical or obsolete names employed in the past, however replaced nowadays by more modern or standardized names.

In addition to common and historical names, chemical compounds may also have synonyms that are specific to a particular field or industry.

  • [(2R,4S)-2-[(1S)-1-iodoethyl]-1,3-dioxolan-4-yl]methanol

Reference codes for other databases

There exist several different chemical codes commonly used in orded to identify molecules:
  • ZINC3830938

Physico-Chemical properties

IUPAC name[(2R,4S)-2-[(1S)-1-iodoethyl]-1,3-dioxolan-4-yl]methanol
Molecular formulaC24H42O21
Molecular weight666.578
Melting point (ºC)
Boiling point (ºC)
Density (g/cm3)
Molar refractivity132.89
Topological polar surface area347.8

LogP and topological polar surface area (TPSA) values were estimated using Open Babel software.

The n-octanol/water partition coeficient (Kow) data is applied in toxicology and drug research. Kow values are used, to guess the environmental fate of persistent organic pollutants. High partition coefficients values, tend to accumulate in the fatty tissue of organisms. Molecules with a log(Kow) (or LogP) greater than 5 are considered to bioaccumulate.

TPSA values are the sum of the surface area over all polar atoms or molecules, mainly oxygen and nitrogen, also including hydrogen atoms.

In medicinal chemistry, TPSA is used to assess the ability of a drug to permeabilise cells.

For molecules to penetrate the blood-brain barrier (and act on receptors in the central nervous system), TPSA values below 90 Å2 are required. Thus, molecules with a polar surface area greater than 140 Å2 tend to be poorly permeable to cell membranes.