Anthracene

A summary of the most common chemical descriptors (InChI Key and SMILES codes) for Anthracene are summarized together with 3D and 2D structures and relevant physico-chemical properties.

What is the Anthracene?

The molecule Anthracene presents a molecular formula of C14H10 and its IUPAC name is anthracene.

Anthracene is a polycyclic aromatic hydrocarbon (PAH) consisting of three fused benzene rings. It is a dark-colored solid that is insoluble in water. Anthracene is used as a dopant in semiconductor devices. It also has applications as a phosphor in light-emitting diodes (LEDs) and in the display industry..

The anthracene molecule is planar and has a molecular weight of 228.37 g/mol. The structure of anthracene is shown in Figure 1. The molecule has a length of 7.48 Å and a width of 4.53 Å..

The three benzene rings in anthracene are fused together at the 1,4-positions. The molecule has a symmetrical structure, with the two central benzene rings being mirror images of each other. The anthracene molecule is non-polar..

The melting point of anthracene is 850 °C and the boiling point is 2100 °C. The density of anthracene is 1.3 g/cm3. The compound is insoluble in water but soluble in organic solvents such as benzene and toluene..

Anthracene is a known carcinogen and should be handled with care. The compound is used as a dopant in semiconductor devices and also has applications in the display industry..

3D structure

Cartesian coordinates

Geometry of Anthracene in x, y and z coordinates (Å units) to copy/paste elsewhere. Generated with Open Babel software.

2D drawing

 

Anthracene MWPLVEDNUUSJAV-UHFFFAOYSA-N chemical compound 2D structure molecule svg
Anthracene

 

Molecule descriptors

 
IUPAC nameanthracene
InChI codeInChI=1S/C7H6O2/c8-7(9)6-4-2-1-3-5-6/h1-5H,(H,8,9)
InChI KeyMWPLVEDNUUSJAV-UHFFFAOYSA-N
SMILESc1c2c(cc3c1cccc3)cccc2

Other names (synonyms)

IUPAC nomenclature provides a standardized method for naming chemical compounds. Although this system is widely used in chemistry, many chemical compounds have also other names commonly used in different contexts. These synonyms can come from a variety of sources and are used for a variety of purposes.

One common source of synonyms for chemical compounds is the common or trivial names, assigned on the basis of appearance, properties, or origin of the molecule.

Another source of synonyms are historical or obsolete names employed in the past, however replaced nowadays by more modern or standardized names.

In addition to common and historical names, chemical compounds may also have synonyms that are specific to a particular field or industry.

Reference codes for other databases

There exist several different chemical codes commonly used in orded to identify molecules:

Physico-Chemical properties

IUPAC nameanthracene
Molecular formulaC14H10
Molecular weight178.229
Melting point (ºC)216
Boiling point (ºC)340
Density (g/cm3)-
Molar refractivity61.45
LogP4.0
Topological polar surface area37.3

LogP and topological polar surface area (TPSA) values were estimated using Open Babel software.

The n-octanol/water partition coeficient (Kow) data is applied in toxicology and drug research. Kow values are used, to guess the environmental fate of persistent organic pollutants. High partition coefficients values, tend to accumulate in the fatty tissue of organisms. Molecules with a log(Kow) (or LogP) greater than 5 are considered to bioaccumulate.

TPSA values are the sum of the surface area over all polar atoms or molecules, mainly oxygen and nitrogen, also including hydrogen atoms.

In medicinal chemistry, TPSA is used to assess the ability of a drug to permeabilise cells.

For molecules to penetrate the blood-brain barrier (and act on receptors in the central nervous system), TPSA values below 90 Å2 are required. Thus, molecules with a polar surface area greater than 140 Å2 tend to be poorly permeable to cell membranes.