cis-2-Heptene

A summary of the most common chemical descriptors (InChI Key and SMILES codes) for cis-2-Heptene are summarized together with 3D and 2D structures and relevant physico-chemical properties.

What is the cis-2-Heptene?

The molecule cis-2-Heptene presents a molecular formula of C7H14 and its IUPAC name is cis-2-heptene.

Cis-2-Heptene is a seven-carbon aliphatic hydrocarbon with the chemical formula C7H14. This molecule is a member of the alkene class of hydrocarbons, which are molecules that contain one or more carbon-carbon double bonds. The "cis" in the name of this molecule refers to the fact that the two double-bonded carbons are on the same side of the molecule..

Cis-2-Heptene is a colourless liquid at room temperature and pressure, with a boiling point of 98.4 degrees Celsius. This molecule has a variety of uses, including as a solvent and as a reactant in the production of other chemicals..

The carbon-carbon double bond in cis-2-Heptene is a reactive site, and this molecule can undergo a variety of chemical reactions. For example, it can be oxidized to form a variety of carboxylic acids, or it can be reacted with other molecules to form new compounds..

Cis-2-Heptene is a relatively simple molecule, but it can be used to produce a wide variety of chemicals. As such, it is an important molecule in the chemical industry..

3D structure

Cartesian coordinates

Geometry of cis-2-Heptene in x, y and z coordinates (Å units) to copy/paste elsewhere. Generated with Open Babel software.

2D drawing

 

cis-2-Heptene OTTZHAVKAVGASB-HYXAFXHYSA-N chemical compound 2D structure molecule svg
cis-2-Heptene

 

Molecule descriptors

 
IUPAC namecis-2-heptene
InChI codeInChI=1S/C14H12/c1-3-7-13(8-4-1)11-12-14-9-5-2-6-10-14/h1-12H/b12-11-
InChI KeyOTTZHAVKAVGASB-HYXAFXHYSA-N
SMILESC(=C\CCCC)\C

Other names (synonyms)

IUPAC nomenclature provides a standardized method for naming chemical compounds. Although this system is widely used in chemistry, many chemical compounds have also other names commonly used in different contexts. These synonyms can come from a variety of sources and are used for a variety of purposes.

One common source of synonyms for chemical compounds is the common or trivial names, assigned on the basis of appearance, properties, or origin of the molecule.

Another source of synonyms are historical or obsolete names employed in the past, however replaced nowadays by more modern or standardized names.

In addition to common and historical names, chemical compounds may also have synonyms that are specific to a particular field or industry.

Reference codes for other databases

There exist several different chemical codes commonly used in orded to identify molecules:

Physico-Chemical properties

IUPAC namecis-2-heptene
Molecular formulaC7H14
Molecular weight98.1861
Melting point (ºC)-
Boiling point (ºC)98
Density (g/cm3)0.710
Molar refractivity35.29
LogP2.8
Topological polar surface area-

LogP and topological polar surface area (TPSA) values were estimated using Open Babel software.

The n-octanol/water partition coeficient (Kow) data is applied in toxicology and drug research. Kow values are used, to guess the environmental fate of persistent organic pollutants. High partition coefficients values, tend to accumulate in the fatty tissue of organisms. Molecules with a log(Kow) (or LogP) greater than 5 are considered to bioaccumulate.

TPSA values are the sum of the surface area over all polar atoms or molecules, mainly oxygen and nitrogen, also including hydrogen atoms.

In medicinal chemistry, TPSA is used to assess the ability of a drug to permeabilise cells.

For molecules to penetrate the blood-brain barrier (and act on receptors in the central nervous system), TPSA values below 90 Å2 are required. Thus, molecules with a polar surface area greater than 140 Å2 tend to be poorly permeable to cell membranes.