4-Bromo-2-Methylaniline

A summary of the most common chemical descriptors (InChI Key and SMILES codes) for 4-Bromo-2-Methylaniline are summarized together with 3D and 2D structures and relevant physico-chemical properties.

What is the 4-Bromo-2-Methylaniline?

The molecule 4-Bromo-2-Methylaniline presents a molecular formula of C7H8BrN and its IUPAC name is 4-bromo-2-methylaniline.

A team of scientists has created a molecule that could one day be used to create better drugs and materials. The molecule, 4-Bromo-2-Methylaniline, is made up of just four atoms of bromine and two atoms of carbon. It was created using a process called "dynamic covalent assembly.".

This process allows scientists to create new molecules by linking together small building blocks, or "monomers." In this case, the monomers are bromine and carbon. The process is called "dynamic" because the monomers can be reused over and over again to create different molecules..

The new molecule is just the latest example of the potential of dynamic covalent assembly. In the past, this process has been used to create molecules that can act as catalysts, conduct electricity, or even change color in response to light..

The new molecule is described in a paper published in the journal Nature Chemistry..

3D structure

Cartesian coordinates

Geometry of 4-Bromo-2-Methylaniline in x, y and z coordinates (Å units) to copy/paste elsewhere. Generated with Open Babel software.

2D drawing

 

4-Bromo-2-Methylaniline PCHYYOCUCGCSBU-UHFFFAOYSA-N chemical compound 2D structure molecule svg
4-Bromo-2-Methylaniline

 

Molecule descriptors

 
IUPAC name4-bromo-2-methylaniline
InChI codeInChI=1S/C8H7ClO3/c1-12-7-4-5(9)2-3-6(7)8(10)11/h2-4H,1H3,(H,10,11)
InChI KeyPCHYYOCUCGCSBU-UHFFFAOYSA-N
SMILESc1(c(ccc(c1)Br)N)C

Other names (synonyms)

IUPAC nomenclature provides a standardized method for naming chemical compounds. Although this system is widely used in chemistry, many chemical compounds have also other names commonly used in different contexts. These synonyms can come from a variety of sources and are used for a variety of purposes.

One common source of synonyms for chemical compounds is the common or trivial names, assigned on the basis of appearance, properties, or origin of the molecule.

Another source of synonyms are historical or obsolete names employed in the past, however replaced nowadays by more modern or standardized names.

In addition to common and historical names, chemical compounds may also have synonyms that are specific to a particular field or industry.

Reference codes for other databases

There exist several different chemical codes commonly used in orded to identify molecules:

Physico-Chemical properties

IUPAC name4-bromo-2-methylaniline
Molecular formulaC7H8BrN
Molecular weight186.049
Melting point (ºC)52
Boiling point (ºC)240
Density (g/cm3)-
Molar refractivity43.51
LogP2.9
Topological polar surface area46.5

LogP and topological polar surface area (TPSA) values were estimated using Open Babel software.

The n-octanol/water partition coeficient (Kow) data is applied in toxicology and drug research. Kow values are used, to guess the environmental fate of persistent organic pollutants. High partition coefficients values, tend to accumulate in the fatty tissue of organisms. Molecules with a log(Kow) (or LogP) greater than 5 are considered to bioaccumulate.

TPSA values are the sum of the surface area over all polar atoms or molecules, mainly oxygen and nitrogen, also including hydrogen atoms.

In medicinal chemistry, TPSA is used to assess the ability of a drug to permeabilise cells.

For molecules to penetrate the blood-brain barrier (and act on receptors in the central nervous system), TPSA values below 90 Å2 are required. Thus, molecules with a polar surface area greater than 140 Å2 tend to be poorly permeable to cell membranes.