Glycerol

A summary of the most common chemical descriptors (InChI Key and SMILES codes) for Glycerol are summarized together with 3D and 2D structures and relevant physico-chemical properties.

What is the Glycerol?

The molecule Glycerol presents a molecular formula of C3H8O3 and its IUPAC name is glycerol.

Glycerol is a simple polyol (sugar alcohol) compound. It is a colorless, odorless, viscous liquid that is widely used in pharmaceutical formulations and cosmetics. Glycerol has three hydroxyl groups that are responsible for its solubility in water and its hygroscopic nature..

Glycerol is used as a humectant, emollient, and lubricant in a variety of cosmetics and personal care products. It is also a component of glycerin soaps and other cleansing products. In the pharmaceutical industry, glycerol is used as a tablet binder and disintegrant, and as a fluid for oral, topical, and suppository preparations. It is also used as a cryoprotectant in the freezing of tissue and organs..

Glycerol is a sugar alcohol that is metabolized slowly by the body. Ingestion of large amounts of glycerol can cause diarrhea and abdominal cramps. Glycerol is also a component of some antifreeze solutions and can be toxic if ingested..

3D structure

Cartesian coordinates

Geometry of Glycerol in x, y and z coordinates (Å units) to copy/paste elsewhere. Generated with Open Babel software.

2D drawing

 

Glycerol PEDCQBHIVMGVHV-UHFFFAOYSA-N chemical compound 2D structure molecule svg
Glycerol

 

Molecule descriptors

 
IUPAC nameglycerol
InChI codeInChI=1S/C8H16O2/c1-3-4-5-6-7-10-8(2)9/h3-7H2,1-2H3
InChI KeyPEDCQBHIVMGVHV-UHFFFAOYSA-N
SMILESC(O)(CO)CO

Other names (synonyms)

IUPAC nomenclature provides a standardized method for naming chemical compounds. Although this system is widely used in chemistry, many chemical compounds have also other names commonly used in different contexts. These synonyms can come from a variety of sources and are used for a variety of purposes.

One common source of synonyms for chemical compounds is the common or trivial names, assigned on the basis of appearance, properties, or origin of the molecule.

Another source of synonyms are historical or obsolete names employed in the past, however replaced nowadays by more modern or standardized names.

In addition to common and historical names, chemical compounds may also have synonyms that are specific to a particular field or industry.

Reference codes for other databases

There exist several different chemical codes commonly used in orded to identify molecules:

Physico-Chemical properties

IUPAC nameglycerol
Molecular formulaC3H8O3
Molecular weight92.0938
Melting point (ºC)20
Boiling point (ºC)-
Density (g/cm3)1.260
Molar refractivity20.02
LogP-1.7
Topological polar surface area26.3

LogP and topological polar surface area (TPSA) values were estimated using Open Babel software.

The n-octanol/water partition coeficient (Kow) data is applied in toxicology and drug research. Kow values are used, to guess the environmental fate of persistent organic pollutants. High partition coefficients values, tend to accumulate in the fatty tissue of organisms. Molecules with a log(Kow) (or LogP) greater than 5 are considered to bioaccumulate.

TPSA values are the sum of the surface area over all polar atoms or molecules, mainly oxygen and nitrogen, also including hydrogen atoms.

In medicinal chemistry, TPSA is used to assess the ability of a drug to permeabilise cells.

For molecules to penetrate the blood-brain barrier (and act on receptors in the central nervous system), TPSA values below 90 Å2 are required. Thus, molecules with a polar surface area greater than 140 Å2 tend to be poorly permeable to cell membranes.