A summary of the most common chemical descriptors (InChI Key and SMILES codes) for 1-Iodopropane are summarized together with 3D and 2D structures and relevant physico-chemical properties.

What is the 1-Iodopropane?

The molecule 1-Iodopropane presents a molecular formula of C3H7I and its IUPAC name is 1-iodopropane.

Iodopropane is a molecule consisting of one iodine atom and three carbon atoms. It is a colourless, volatile liquid with a pungent odour. It is used as a reagent in organic synthesis and as a solvent for fats and oils..

Iodopropane was first synthesized by the German chemist Julius Wilhelm Ziegler in 1882. It is produced commercially by the reaction of propane with iodine..

The iodine atom in iodopropane is bonded to three carbon atoms in a trigonal planar arrangement. The molecule has a dipole moment due to the asymmetric distribution of charge on the iodine atom..

Iodopropane is a versatile reagent in organic synthesis. It can be used to alkylate aromatic compounds and to epoxidize alkenes. It is also used as a solvent for fats and oils..

Iodopropane is a highly flammable liquid and must be handled with care. It should be stored in a well-ventilated area and away from sources of ignition..

3D structure

Cartesian coordinates

Geometry of 1-Iodopropane in x, y and z coordinates (Å units) to copy/paste elsewhere. Generated with Open Babel software.

2D drawing


1-Iodopropane PVWOIHVRPOBWPI-UHFFFAOYSA-N chemical compound 2D structure molecule svg


Molecule descriptors

IUPAC name1-iodopropane
InChI codeInChI=1S/C3H7I/c1-2-3-4/h2-3H2,1H3

Other names (synonyms)

IUPAC nomenclature provides a standardized method for naming chemical compounds. Although this system is widely used in chemistry, many chemical compounds have also other names commonly used in different contexts. These synonyms can come from a variety of sources and are used for a variety of purposes.

One common source of synonyms for chemical compounds is the common or trivial names, assigned on the basis of appearance, properties, or origin of the molecule.

Another source of synonyms are historical or obsolete names employed in the past, however replaced nowadays by more modern or standardized names.

In addition to common and historical names, chemical compounds may also have synonyms that are specific to a particular field or industry.

Reference codes for other databases

There exist several different chemical codes commonly used in orded to identify molecules:

Physico-Chemical properties

IUPAC name1-iodopropane
Molecular formulaC3H7I
Molecular weight169.992
Melting point (ºC)-101
Boiling point (ºC)102
Density (g/cm3)1.749
Molar refractivity29.50
Topological polar surface area-

LogP and topological polar surface area (TPSA) values were estimated using Open Babel software.

The n-octanol/water partition coeficient (Kow) data is applied in toxicology and drug research. Kow values are used, to guess the environmental fate of persistent organic pollutants. High partition coefficients values, tend to accumulate in the fatty tissue of organisms. Molecules with a log(Kow) (or LogP) greater than 5 are considered to bioaccumulate.

TPSA values are the sum of the surface area over all polar atoms or molecules, mainly oxygen and nitrogen, also including hydrogen atoms.

In medicinal chemistry, TPSA is used to assess the ability of a drug to permeabilise cells.

For molecules to penetrate the blood-brain barrier (and act on receptors in the central nervous system), TPSA values below 90 Å2 are required. Thus, molecules with a polar surface area greater than 140 Å2 tend to be poorly permeable to cell membranes.