Bicisate

A summary of the most common chemical descriptors (InChI Key and SMILES codes) for Bicisate are summarized together with 3D and 2D structures and relevant physico-chemical properties.

What is the Bicisate?

The molecule Bicisate presents a molecular formula of C20H27N5O2 and its IUPAC name is ethyl (2R)-2-[2-[[(2R)-1-ethoxy-1-oxo-3-sulfanylpropan-2-yl]amino]ethylamino]-3-sulfanylpropanoate.

Bicisate, also known as 3,5-dibromo-4-hydroxybenzamide, is a fungicide that is used to control diseases caused by fungi and oomycetes. It is a white to off-white, crystalline solid with a molecular weight of 366.91 g/mol..

Bicisate is classified as a succinate dehydrogenase inhibitor, which means it interferes with the energy production processes of fungi. It is effective at low concentrations and has a relatively low toxicity to mammals, birds, and aquatic organisms..

Bicisate is used to control diseases on a wide range of crops, including cereals, fruits, vegetables, and ornamental plants. It is applied as a spray or dust to the surface of plants and is absorbed through the leaves and transported to the roots, where it provides systemic protection against diseases. Bicisate is most effective when applied preventively, before the onset of disease..

Bicisate is classified as a hazardous substance and should be handled with caution. It is toxic to aquatic life and may have long-term adverse effects on the environment. It is important to follow label instructions and precautions when using bicisate to ensure safe and effective use..

Summary

From all the above, this molecule is a fungicide that is used to control diseases caused by fungi and oomycetes. It is effective at low concentrations and has a relatively low toxicity to mammals and birds, but it is toxic to aquatic life and may have long-term adverse effects on the environment. It is important to follow label instructions and precautions when using bicisate to ensure safe and effective use..

3D structure

Cartesian coordinates

Geometry of Bicisate in x, y and z coordinates (Å units) to copy/paste elsewhere. Generated with Open Babel software.

2D drawing

 

Bicisate RRGUKTPIGVIEKM-UHFFFAOYSA-N chemical compound 2D structure molecule svg
Bicisate

 

Molecule descriptors

 
IUPAC nameethyl (2R)-2-[2-[[(2R)-1-ethoxy-1-oxo-3-sulfanylpropan-2-yl]amino]ethylamino]-3-sulfanylpropanoate
InChI codeInChI=1S/C20H27N5O2/c26-20-12-9-15-14-17(10-11-18(15)21-20)27-13-5-4-8-19-22-23-24-25(19)16-6-2-1-3-7-16/h10-11,14,16H,1-9,12-13H2,(H,21,26)
InChI KeyRRGUKTPIGVIEKM-UHFFFAOYSA-N
SMILESO=C1CCc2cc(OCCCCc3nnnn3C3CCCCC3)ccc2N1

Other names (synonyms)

IUPAC nomenclature provides a standardized method for naming chemical compounds. Although this system is widely used in chemistry, many chemical compounds have also other names commonly used in different contexts. These synonyms can come from a variety of sources and are used for a variety of purposes.

One common source of synonyms for chemical compounds is the common or trivial names, assigned on the basis of appearance, properties, or origin of the molecule.

Another source of synonyms are historical or obsolete names employed in the past, however replaced nowadays by more modern or standardized names.

In addition to common and historical names, chemical compounds may also have synonyms that are specific to a particular field or industry.

  • (2R,2'R)-Diethyl 2,2'-(ethane-1,2-diylbis(azanediyl))bis(3-mercaptopropanoate)
  • 121251-02-3
  • 121251-02-3 (Free base)
  • 3JXF0Z0XOI
  • Bicisate
  • Bicisate (Free base)
  • DB11164
  • DIETHYL (2R,2'R)-2,2'-(ETHANE-1,2-DIYLDIIMINO)BIS(3-MERCAPTOPROPANOATE)
  • Ecd
  • Q27257345
  • diethyl 2,2'-(ethane-1,2-diylbis(azanediyl))(2R,2'R)-bis(3-mercaptopropanoate)
  • ethyl (2R)-2-[2-[[(2R)-1-ethoxy-1-oxo-3-sulfanylpropan-2-yl]amino]ethylamino]-3-sulfanylpropanoate
  • ethylene dicysteine di ethyl ester
  • l-Cysteine, N,N'-1,2-ethanediylbis-, 1,1'-diethyl ester
  • l-Cysteine, N,N'-1,2-ethanediylbis-, diethyl ester
  • starbld0000849

Reference codes for other databases

There exist several different chemical codes commonly used in orded to identify molecules:
  • ZINC22593510
  • UNII-3JXF0Z0XOI
  • DTXSID0058728
  • SCHEMBL1841018

Physico-Chemical properties

IUPAC nameethyl (2R)-2-[2-[[(2R)-1-ethoxy-1-oxo-3-sulfanylpropan-2-yl]amino]ethylamino]-3-sulfanylpropanoate
Molecular formulaC20H27N5O2
Molecular weight369.461
Melting point (ºC)
Boiling point (ºC)
Density (g/cm3)
Molar refractivity106.50
LogP3.6
Topological polar surface area81.9

LogP and topological polar surface area (TPSA) values were estimated using Open Babel software.

The n-octanol/water partition coeficient (Kow) data is applied in toxicology and drug research. Kow values are used, to guess the environmental fate of persistent organic pollutants. High partition coefficients values, tend to accumulate in the fatty tissue of organisms. Molecules with a log(Kow) (or LogP) greater than 5 are considered to bioaccumulate.

TPSA values are the sum of the surface area over all polar atoms or molecules, mainly oxygen and nitrogen, also including hydrogen atoms.

In medicinal chemistry, TPSA is used to assess the ability of a drug to permeabilise cells.

For molecules to penetrate the blood-brain barrier (and act on receptors in the central nervous system), TPSA values below 90 Å2 are required. Thus, molecules with a polar surface area greater than 140 Å2 tend to be poorly permeable to cell membranes.