Artemether

A summary of the most common chemical descriptors (InChI Key and SMILES codes) for Artemether are summarized together with 3D and 2D structures and relevant physico-chemical properties.

What is the Artemether?

The molecule Artemether presents a molecular formula of C16H26O5 and its IUPAC name is (1R,4S,5R,8S,9R,10S,12R,13R)-10-methoxy-1,5,9-trimethyl-11,14,15,16-tetraoxatetracyclo[10.3.1.04,13.08,13]hexadecane.

Artemether is a medication used to treat malaria. It is typically used together with lumefantrine. It is not recommended for use in pregnant women or children less than five years old. It is taken by mouth..

Common side effects include abdominal pain, headache, and nausea. Other side effects include liver problems and allergic reactions. It is unclear if it is safe in pregnancy. Artemether is in the antimalarial and the Artemisinin class of medications..

Artemether was first described in 1972. It is on the World Health Organization's List of Essential Medicines, the most effective and safe medicines needed in a health system. The wholesale cost in the developing world is about US$0.47 per day. In the United States it costs more than US$6.00 per day..

Artemether is used to treat malaria caused by Plasmodium falciparum that is resistant to chloroquine. It is also used to treat severe malaria. It is not recommended for use in pregnant women or children less than five years old. The recommended adult dose is 4 tablets at once, followed by 2 tablets 8 hours later and then 2 tablets daily for 7 days. For children the recommended dose is 5 mg/kg at once, followed by 2.5 mg/kg 8 hours later and then 2.5 mg/kg daily for 7 days..

Common side effects include abdominal pain, headache, and nausea. Other side effects include liver problems and allergic reactions. Artemether is in the antimalarial and the Artemisinin class of medications..

Artemether was first described in 1972. It is on the World Health Organization's List of Essential Medicines, the most effective and safe medicines needed in a health system. The wholesale cost in the developing world is about US$0.47 per day. In the United States it costs more than US$6.00 per day..

3D structure

Cartesian coordinates

Geometry of Artemether in x, y and z coordinates (Å units) to copy/paste elsewhere. Generated with Open Babel software.

2D drawing

 

Artemether SXYIRMFQILZOAM-HVNFFKDJSA-N chemical compound 2D structure molecule svg
Artemether

 

Molecule descriptors

 
IUPAC name(1R,4S,5R,8S,9R,10S,12R,13R)-10-methoxy-1,5,9-trimethyl-11,14,15,16-tetraoxatetracyclo[10.3.1.04,13.08,13]hexadecane
InChI codeInChI=1S/C16H26O5/c1-9-5-6-12-10(2)13(17-4)18-14-16(12)11(9)7-8-15(3,19-14)20-21-16/h9-14H,5-8H2,1-4H3/t9-,10-,11+,12+,13+,14-,15-,16-/m1/s1
InChI KeySXYIRMFQILZOAM-HVNFFKDJSA-N
SMILESCO[C@H]1O[C@@H]2O[C@@]3(C)CC[C@H]4[C@H](C)CC[C@@H]([C@H]1C)[C@]42OO3

Other names (synonyms)

IUPAC nomenclature provides a standardized method for naming chemical compounds. Although this system is widely used in chemistry, many chemical compounds have also other names commonly used in different contexts. These synonyms can come from a variety of sources and are used for a variety of purposes.

One common source of synonyms for chemical compounds is the common or trivial names, assigned on the basis of appearance, properties, or origin of the molecule.

Another source of synonyms are historical or obsolete names employed in the past, however replaced nowadays by more modern or standardized names.

In addition to common and historical names, chemical compounds may also have synonyms that are specific to a particular field or industry.

  • (1R,4S,5R,8S,9R,10S,12R,13R)-10-methoxy-1,5,9-trimethyl-11,14,15,16-tetraoxatetracyclo[10.3.1.04,13.08,13]hexadecane
  • (1R,4S,5R,8S,9R,10S,12R,13R)-10-methoxy-1,5,9-trimethyl-11,14,15,16-tetraoxatetracyclo[10.3.1.0;{4,13}.0;{8,13}]hexadecane
  • (1R,4S,5R,8S,9R,10S,12R,13R)-10-methoxy-1,5,9-trimethyl-11,14,15,16-tetraoxatetracyclo[10.3.1.0^{4,13}.0^{8,13}]hexadecane
  • (3R,5aS,6R,8aS,9R,10S,12R,12aR)-10-methoxy-3,6,9-trimethyldecahydro-3,12-epoxypyrano[4,3-j][1,2]benzodioxepine
  • (3R,5aS,6R,8aS,9R,10S,12R,12aR)-10-methoxy-3,6,9-trimethyldecahydro-3H-3,12-epoxy[1,2]dioxepino[4,3-i]isochromene
  • (3R,5aS,6R,8aS,9R,10S,12R,12aR)-Decahydro-10-methoxy-3,6,9-trimethyl-3,12-epoxy-12H-pyrano(4,3-j)-1,2-benzodioxepin
  • (3R,5aS,6R,8aS,9R,10S,12R,12aR)-Decahydro-10-methoxy-3,6,9-trimethyl-3,12-epoxy-12H-pyrano[4,3-j]-1,2-benzodioxepin
  • (3r,5as,6r,8as,9r,10s,12r,12ar)-decahydro-10methoxy-3,6,9-trimethyl-3,12-epoxy-12h-pyrano[4,3-j]-1,2benzodioxepin
  • .beta.-Artemether
  • 10-methoxy-1,5,9-trimethyl-(1R,4S,5R,8S,9R,10S,12R,13R)-11,14,15,16-tetraoxatetracyclo[10.3.1.04,13.08,13]hexadecane
  • 2-Chloro-3,5-dimethyl-4-methoxypyridinehydrochloride
  • 3,12-Epoxy-12H-pyrano(4,3-j)-1,2-benzodioxepin, decahydro-10-methoxy-3,6,9-trimethyl-, (3-alpha,5a-beta,6-beta,8a-beta,9-alpha,12-beta,12aR)-, (+)-
  • 3,12-Epoxy-12H-pyrano[4,3-j]-1,2-benzodioxepin, decahydro-10-methoxy-3,6,9-trimethyl-, (3R,5aS,6R,8aS,9R,10S,12R,12aR)-
  • 71963-77-4
  • AB00698368-05
  • AB00698368_06
  • ACT03313
  • AMY25769
  • Artemeter
  • Artemetero
  • Artemether
  • Artemether (JAN/USAN/INN)
  • Artemetheri
  • Artemetherum
  • Artemisininelactol methyl ether
  • Artemos
  • Artenam
  • Artesaph
  • Artimist
  • BDBM50248200
  • C7D6T3H22J
  • CCG-101180
  • CGP 56696
  • CPD000469218
  • D02483
  • D8Z
  • DB06697
  • Dihydroartemisinin impurity g
  • Dihydroartemisinin methyl ether
  • Dihydroqinghaosu methyl ether
  • Dihydroquinghaosu methyl ether
  • Falcidol
  • GTPL9955
  • Gvither
  • HMS2052L09
  • HMS2232J21
  • HSDB 7456
  • HY-N0402
  • Larither
  • MFCD00866205
  • MLS001424249
  • Malartem
  • Methyl-dihydroartemisinine
  • NC00430
  • NSC 665970
  • NSC-665970
  • NSC-759820
  • NSC665970
  • Paluther
  • Q416199
  • Qinghao
  • SM 224
  • SM-224
  • SM224
  • SMR000469218
  • Z1550675461
  • beta artemether
  • beta-Artemether
  • beta-Dihydroartemisinin methyl ether
  • methoxy(trimethyl)[?]

Reference codes for other databases

There exist several different chemical codes commonly used in orded to identify molecules:
  • ZINC14263142
  • UNII-C7D6T3H22J
  • AKOS026750084
  • DTXSID7040651
  • CHEMBL566534
  • CHEBI:195280
  • SCHEMBL1650501

Physico-Chemical properties

IUPAC name(1R,4S,5R,8S,9R,10S,12R,13R)-10-methoxy-1,5,9-trimethyl-11,14,15,16-tetraoxatetracyclo[10.3.1.04,13.08,13]hexadecane
Molecular formulaC16H26O5
Molecular weight298.375
Melting point (ºC)
Boiling point (ºC)
Density (g/cm3)
Molar refractivity76.07
LogP2.8
Topological polar surface area46.2

LogP and topological polar surface area (TPSA) values were estimated using Open Babel software.

The n-octanol/water partition coeficient (Kow) data is applied in toxicology and drug research. Kow values are used, to guess the environmental fate of persistent organic pollutants. High partition coefficients values, tend to accumulate in the fatty tissue of organisms. Molecules with a log(Kow) (or LogP) greater than 5 are considered to bioaccumulate.

TPSA values are the sum of the surface area over all polar atoms or molecules, mainly oxygen and nitrogen, also including hydrogen atoms.

In medicinal chemistry, TPSA is used to assess the ability of a drug to permeabilise cells.

For molecules to penetrate the blood-brain barrier (and act on receptors in the central nervous system), TPSA values below 90 Å2 are required. Thus, molecules with a polar surface area greater than 140 Å2 tend to be poorly permeable to cell membranes.