CaCO3

A summary of the most common chemical descriptors (InChI Key and SMILES codes) for CaCO3 are summarized together with 3D and 2D structures and relevant physico-chemical properties.

What is the CaCO3?

The molecule CaCO3 presents a molecular formula of CCaO3 and its IUPAC name is calcium; carbonate.

CaCO3 is a molecule made up of one calcium atom, one carbon atom, and three oxygen atoms. It is a white, powdery substance that is used in a variety of products, including antacids, toothpaste, and chalk..

CaCO3 is formed when calcium and carbonate ions combine in water. The carbonate ions come from dissolved carbon dioxide in the water. The calcium and carbonate ions bond together to form calcium carbonate, which precipitates out of the water and forms a white powder..

CaCO3 is insoluble in water, meaning it does not dissolve and is not affected by water. However, it is slightly soluble in acid, meaning it will dissolve a little bit in acidic solutions. This is why CaCO3 is used in antacids, which are taken to neutralize stomach acid..

CaCO3 is also used in toothpaste and chalk. Toothpaste often contains fluoride, which helps to prevent cavities, and CaCO3 helps to abrasive, or scrub, teeth clean. Chalk is made up of tiny pieces of CaCO3, and is used to write on blackboards and other surfaces..

3D structure

Cartesian coordinates

Geometry of CaCO3 in x, y and z coordinates (Å units) to copy/paste elsewhere. Generated with Open Babel software.

2D drawing

 

CaCO3 VTYYLEPIZMXCLO-UHFFFAOYSA-L chemical compound 2D structure molecule svg
CaCO3

 

Molecule descriptors

 
IUPAC namecalcium; carbonate
InChI codeInChI=1S/CH2O3.Ca/c2-1(3)4;/h(H2,2,3,4);/q;+2/p-2
InChI KeyVTYYLEPIZMXCLO-UHFFFAOYSA-L
SMILESC(=O)([O-])[O-].[Ca+2]

Other names (synonyms)

IUPAC nomenclature provides a standardized method for naming chemical compounds. Although this system is widely used in chemistry, many chemical compounds have also other names commonly used in different contexts. These synonyms can come from a variety of sources and are used for a variety of purposes.

One common source of synonyms for chemical compounds is the common or trivial names, assigned on the basis of appearance, properties, or origin of the molecule.

Another source of synonyms are historical or obsolete names employed in the past, however replaced nowadays by more modern or standardized names.

In addition to common and historical names, chemical compounds may also have synonyms that are specific to a particular field or industry.

Reference codes for other databases

There exist several different chemical codes commonly used in orded to identify molecules:

Physico-Chemical properties

IUPAC namecalcium; carbonate
Molecular formulaCCaO3
Molecular weight100.09
Melting point (ºC)800
Boiling point (ºC) -
Density (g/cm3)2.93
Molar refractivity
LogP-
Topological polar surface area63.2

LogP and topological polar surface area (TPSA) values were estimated using Open Babel software.

The n-octanol/water partition coeficient (Kow) data is applied in toxicology and drug research. Kow values are used, to guess the environmental fate of persistent organic pollutants. High partition coefficients values, tend to accumulate in the fatty tissue of organisms. Molecules with a log(Kow) (or LogP) greater than 5 are considered to bioaccumulate.

TPSA values are the sum of the surface area over all polar atoms or molecules, mainly oxygen and nitrogen, also including hydrogen atoms.

In medicinal chemistry, TPSA is used to assess the ability of a drug to permeabilise cells.

For molecules to penetrate the blood-brain barrier (and act on receptors in the central nervous system), TPSA values below 90 Å2 are required. Thus, molecules with a polar surface area greater than 140 Å2 tend to be poorly permeable to cell membranes.