2-Hydroxy-p-Methoxyacetophenone

A summary of the most common chemical descriptors (InChI Key and SMILES codes) for 2-Hydroxy-p-Methoxyacetophenone are summarized together with 3D and 2D structures and relevant physico-chemical properties.

What is the 2-Hydroxy-p-Methoxyacetophenone?

The molecule 2-Hydroxy-p-Methoxyacetophenone presents a molecular formula of C9H10O3 and its IUPAC name is 2-hydroxy-p-methoxyacetophenone.

2-Hydroxy-p-Methoxyacetophenone is a molecule with the chemical formula C10H12O3. This molecule lies as a phenol, which is a type of organic compound that contains a hydroxyl group (-OH) attached to an aromatic ring. This particular molecule is a derivative of acetophenone, and it is used in a variety of applications..

This molecule has a molecular weight of 184.19 g/mol and a boiling point of 290.4 °C. It is soluble in water, ethanol, and methanol. This molecule is used as a starting material for the synthesis of a variety of other chemicals. It is also used as a photoinitiator in UV curing applications..

This molecule has a variety of uses due to its unique chemical structure. It is used as a starting material for the synthesis of other chemicals, and it is also used as a photoinitiator in UV curing applications. This molecule is an important part of the chemical industry, and it plays a vital role in a variety of applications..

3D structure

Cartesian coordinates

Geometry of 2-Hydroxy-p-Methoxyacetophenone in x, y and z coordinates (Å units) to copy/paste elsewhere. Generated with Open Babel software.

2D drawing

 

2-Hydroxy-p-Methoxyacetophenone YTOKFOPFITZGDM-UHFFFAOYSA-N chemical compound 2D structure molecule svg
2-Hydroxy-p-Methoxyacetophenone

 

Molecule descriptors

 
IUPAC name2-hydroxy-p-methoxyacetophenone
InChI codeInChI=1S/C5H5NO/c7-5-3-1-2-4-6-5/h1-4H,(H,6,7)
InChI KeyYTOKFOPFITZGDM-UHFFFAOYSA-N
SMILESC(=O)(c1ccc(cc1)OC)CO

Other names (synonyms)

IUPAC nomenclature provides a standardized method for naming chemical compounds. Although this system is widely used in chemistry, many chemical compounds have also other names commonly used in different contexts. These synonyms can come from a variety of sources and are used for a variety of purposes.

One common source of synonyms for chemical compounds is the common or trivial names, assigned on the basis of appearance, properties, or origin of the molecule.

Another source of synonyms are historical or obsolete names employed in the past, however replaced nowadays by more modern or standardized names.

In addition to common and historical names, chemical compounds may also have synonyms that are specific to a particular field or industry.

Reference codes for other databases

There exist several different chemical codes commonly used in orded to identify molecules:

Physico-Chemical properties

IUPAC name2-hydroxy-p-methoxyacetophenone
Molecular formulaC9H10O3
Molecular weight166.174
Melting point (ºC)106
Boiling point (ºC)-
Density (g/cm3)-
Molar refractivity44.29
LogP0.9
Topological polar surface area33.1

LogP and topological polar surface area (TPSA) values were estimated using Open Babel software.

The n-octanol/water partition coeficient (Kow) data is applied in toxicology and drug research. Kow values are used, to guess the environmental fate of persistent organic pollutants. High partition coefficients values, tend to accumulate in the fatty tissue of organisms. Molecules with a log(Kow) (or LogP) greater than 5 are considered to bioaccumulate.

TPSA values are the sum of the surface area over all polar atoms or molecules, mainly oxygen and nitrogen, also including hydrogen atoms.

In medicinal chemistry, TPSA is used to assess the ability of a drug to permeabilise cells.

For molecules to penetrate the blood-brain barrier (and act on receptors in the central nervous system), TPSA values below 90 Å2 are required. Thus, molecules with a polar surface area greater than 140 Å2 tend to be poorly permeable to cell membranes.