3'-O-Methyluridine

A summary of the most common chemical descriptors (InChI Key and SMILES codes) for 3'-O-Methyluridine are summarized together with 3D and 2D structures and relevant physico-chemical properties.

What is the 3'-O-Methyluridine?

The molecule 3'-O-Methyluridine presents a molecular formula of C8H6N2O and its IUPAC name is quinoxalin-5-ol.

3'-O-Methyluridine (3'-OMe-U) is a nucleoside analog that is used as a building block in the construction of synthetic oligonucleotides. It is also known as 3'-O-methyl-uridine or 3'-O-methyluridine. 3'-OMe-U is resistant to degradation by nucleases, making it a useful modification for oligonucleotides that are intended for use in vivo..

3'-OMe-U can be incorporated into oligonucleotides using standard phosphoramidite chemistry. It can also be prepared using solid-phase synthesis..

3'-OMe-U has been shown to be effective in inhibiting the formation of amyloid fibrils, which are associated with a number of neurodegenerative diseases. In one study, 3'-OMe-U was found to inhibit the formation of amyloid fibrils in a cell-based model of Alzheimer's disease..

3'-OMe-U has also been shown to inhibit the replication of a number of viruses, including HIV-1, HCV, and EBV..

3'-OMe-U is a promising nucleoside analog with a variety of potential applications. Further research is needed to fully characterize its utility and safety..

3D structure

Cartesian coordinates

Geometry of 3'-O-Methyluridine in x, y and z coordinates (Å units) to copy/paste elsewhere. Generated with Open Babel software.

2D drawing

 

3'-O-Methyluridine ZUQDDQFXSNXEOD-UHFFFAOYSA-N chemical compound 2D structure molecule svg
3'-O-Methyluridine

 

Molecule descriptors

 
IUPAC namequinoxalin-5-ol
InChI codeInChI=1S/C8H6N2O/c11-7-3-1-2-6-8(7)10-5-4-9-6/h1-5,11H
InChI KeyZUQDDQFXSNXEOD-UHFFFAOYSA-N
SMILESC1=CC2=NC=CN=C2C(=C1)O

Other names (synonyms)

IUPAC nomenclature provides a standardized method for naming chemical compounds. Although this system is widely used in chemistry, many chemical compounds have also other names commonly used in different contexts. These synonyms can come from a variety of sources and are used for a variety of purposes.

One common source of synonyms for chemical compounds is the common or trivial names, assigned on the basis of appearance, properties, or origin of the molecule.

Another source of synonyms are historical or obsolete names employed in the past, however replaced nowadays by more modern or standardized names.

In addition to common and historical names, chemical compounds may also have synonyms that are specific to a particular field or industry.

Reference codes for other databases

There exist several different chemical codes commonly used in orded to identify molecules:

Physico-Chemical properties

IUPAC namequinoxalin-5-ol
Molecular formulaC8H6N2O
Molecular weight258.23
Melting point (ºC) -
Boiling point (ºC) -
Density (g/cm3) -
Molar refractivity
LogP0.8
Topological polar surface area46.0

LogP and topological polar surface area (TPSA) values were estimated using Open Babel software.

The n-octanol/water partition coeficient (Kow) data is applied in toxicology and drug research. Kow values are used, to guess the environmental fate of persistent organic pollutants. High partition coefficients values, tend to accumulate in the fatty tissue of organisms. Molecules with a log(Kow) (or LogP) greater than 5 are considered to bioaccumulate.

TPSA values are the sum of the surface area over all polar atoms or molecules, mainly oxygen and nitrogen, also including hydrogen atoms.

In medicinal chemistry, TPSA is used to assess the ability of a drug to permeabilise cells.

For molecules to penetrate the blood-brain barrier (and act on receptors in the central nervous system), TPSA values below 90 Å2 are required. Thus, molecules with a polar surface area greater than 140 Å2 tend to be poorly permeable to cell membranes.